ALTERNATE DOUBLE-SINGLE TRACK

University of Cantabria Paola Moraga Contreras

May 27th, 2015

Talk's Index

The talk has been divided in following points:

- Introduction and motivation of the alternate double-single track (ADST).
- 2 Description, properties and advantages of the alternate double-single track (ADST).
- Problem statement of the ADST lines as a mixed binary optimization mathematical problem.
- Application to the Palencia-Santander case.
- Some international candidate lines for ADS.

• ク ヘ (● ▲ ■ ▶

HIGH SPEED RAILWAY DEVELOPMENT IN SPAIN

While at the beginning, high speed lines construction in Spain was oriented to **link two large population centers**, at the present time current and future plans involve **new lines in which only one of the ends is a large population**.

This implies a completely different approach and some reflections:

- The first reflection consists to realize that in the case of peripheral lines, the number of users is necessarily much lower and consequently the demand is much more reduced leading to train frequencies much smaller.
- The second reflection must be relative to the question of whether or not the expensive double track is necessary, or a new alternative should be contemplated.
- Then and without necessarily rejecting the single track solution, new solutions are required. This is how the alternate double single track (ADST) arises.
- Finally, since decisions with optimal criteria are required, computer programs are unavoidable to design, develop preliminary projects and evaluate the proposed solutions.

WHAT IS THE ALTERNATE DOUBLE-SINGLE TRACK(ADST)?

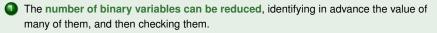
The Alternate double-single track (**ADST**) essentially consists in utilizing: **single track throughout expensive segments** (tunnels and viaducts) and **double track in cheap segments** (plain areas) and **only where it is necessary**. It should be clearly stated that:

- An ADST line is not a single track line.
- 2 An ADST line is not a double track line.
- Ithe ADST performance is much closer to double than to single track.
- The ADST cost is much closer to single track than to double track.
- It reaches practically the same performance as the double track solution for the expected demand and even slightly superior to it.
- It decreases markedly the construction cost (until a 40 %).
- Maintenance cost are significantly reduced.
- Finally, lines, which are nor economically viable as double track lines can become viable as ADST lines.

WHY ARE OPERATION RESEARCH METHODS NECESSARY?

The design and management of an alternate double single track line is complex, because it requires:

- Deciding which segments should be constructed in single track and which others in double track.
- Satisfy the safety and time table constraints of the different services with the aim of obtaining small travel times when we have a single track in some segments.
- Minimize costs and travel times and optimize the infrastructure usage.


Due to the complexity of the problem, the use of an optimization program is necessary in order to satisfy all the imposed safety and service conditions.

PROBLEM SOLVING DIFFICULTIES

- It is a mixed problem which combines continuous variables and binary variables, that is known to present difficulties mainly if there are non-linear constraints.
- Provide the second s
- Certain constraints are initially non linear. This is especially complex in mixed variable cases.

Depending on the objective function, the problem can have an infinite number of solutions.

SOME SOLUTIONS

The nonlinear constraints can be linearized without altering the solution.

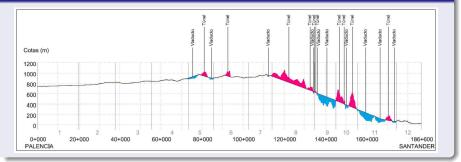
We can use a hierarchized objective function, which includes the goals in the desired order.

ADST Application

ADST Application

୬ < ୯ ∢ ≣ ।

Palencia-Santander line


Valparaiso-Santiago (Chile) Case Internationalization Longitudinal profile, plan view y segments costs Analysis of the different studied solutions Proposed solution

Palencia-Santander line

9 < ? < ≣ ▶

Longitudinal profile, plan view y segments costs Analysis of the different studied solutions Proposed solution

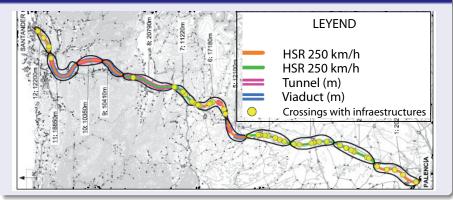
GEOMETRIC DESCRIPTION OF THE PALENCIA-SANTANDER LINE

DESIGN PARAMETERS:

Slopes:

Vertical curves:

- maximum=15 mm/m; exceptional = 18mm/m
- In tunnel: minimum = 5 mm/m; exceptional = 2 mm/m
- Max L in maximum slope= 3000 m.


For S=300 km/h, minimum Kv=32000 m.

For S=250 km/h, minimum Kv=22000 m.

≁) ૧ (* ∢ ≜

Longitudinal profile, plan view y segments costs Analysis of the different studied solutions Proposed solution

DESCRIPTION IN THE PALENCIA-SANTANDER LINE

Longitudinal profile, plan view y segments costs Analysis of the different studied solutions Proposed solution

SELECTED SEGMENTS AND COST PER KILOMETER FROM THE DIFFERENT ALTERNATIVES

				Construction Cost per Kilometer (M€)					
Segment	Origin	End	Leng (Km)	Double HSR	Simple HSR	Simple HSR and Rehabilitated	Rehabilitated		
1	Palencia	Amusco	20.22	6.89	4.12	4.42	0.3		
2	Amusco	Santillana	17.70	6.03	3.87	4.17	0.3		
3	Santillana	Espinosa	17.80	5.965	3.79	4.09	0.3		
4	Espinosa	Alar	17.80	6.37	3.92	4.22	0.3		
5	Alar	Aguilar	12.10	22.89	14.58	14.88	0.3		
6	Aguilar	Mataporquera	17.18	15.67	9.82	10.12	0.3		
7	Mataporquera	Reinosa	21.22	14.09	9.47	9.77	0.3		
8	Reinosa	Santiurde	10.79	52.91	31.87	32.17	0.3		
9	Santiurde	Barcena	10.41	33.66	21.52	21.82	0.3		
10	Barcena	Los Corrales	10.35	47.86	28.75	29.05	0.3		
11	Los Corrales	Torrelavega	8.55	34.73	22.17	22.47	0.3		
12	Torrelavega	Santander	22.20	8.85	6.14	6.44	0.3		

9 < ? < ≣ ▶

Longitudinal profile, plan view y segments costs Analysis of the different studied solutions Proposed solution

CHART SHOWING THE DIFFERENT SOLUTIONS AN ASSOCIATED BUDGET AND TRAVEL TIMES FOR THE SANTANDER-PALENCIA LINE


Cases	Segments												Track Typology			Budget Travel time	Time Budget		get	
cases	1	2	з	4	5	6	7	8	9	10	11	12	Double HSR	Simple HSR	RH	(M€)	Traver time	reduction	saving (M€)	
Double													100%	0%	0%	3,221	1 h 3 min	1 h 47 min	0	0%
0													42%	58%	0%	2,267	1 h 3 min	1 h 47 min	954	30%
1													10%	90%	0%	2,070	1 h 8 min	1 h 41 min	1,151	36%
10													0%	100%	28%	2,042	1 h 9 min	1 h 41 min	1,179	37%
20													0%	67%	54%	866	1 h 16 min	1 h 34 min	2,355	73%
30													0%	51%	68%	528	1 h 25 min	1 h 25 min	2,693	84%
40													0%	39%	80%	334	1 h 30 min	1 h 20 min	2,887	90%
50													0%	0%	100%	56	1 h 46 min	1 h 4 min	3,165	98%
											Current	2 h 50 min								
	Simple HSR +											-								

		nendbintated		
Double HSR	Simple HSR	Simple HSR + Rehabilitated	Rehabilitated	

Longitudinal profile, plan view y segments costs Analysis of the different studied solutions Proposed solution

TRAVEL TIME-BUDGET GRAPHIC

The figure shows the cost versus reduction in travel time (in hours).

ALTERNATE DOUBLE SINGLE TRACK (ADST)

Longitudinal profile, plan view y segments costs Analysis of the different studied solutions Proposed solution

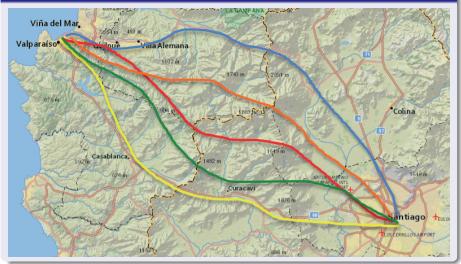
Green segments are double track.

Example of circulation diagram with 8 additional long trip trains: Santander-Palencia

200 - Santander Muriedas Zunta Zunta Caldas Corrales = = = = =					
150 Freques Barcena Montable Pecquera Pecquera Reinosa				≡ ∕}≹/ = ≠/≒ /≢/=\ ‡/	
Sopera					
13					
0	5	10	15	20	25

Current Situation Track Alternatives Proposed solution Next Steps

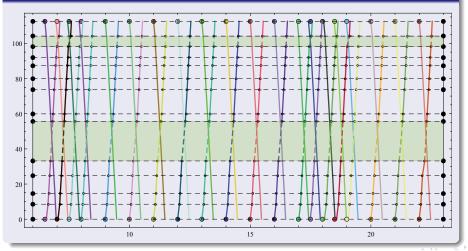
Valparaiso-Santiago line


Current Situation Track Alternatives Proposed solution Next Steps

NEXT STEPS

- Santiago: 7.5 Million of habitants.
- Valparaiso Metro Area: 1 Million Habitants
- Highway distance 120 Km.
- Travel times:
 - Bus 2 hours
 - Car 1,5 hours
- 15.000 people travel every day between Valparaiso-Santiago

Current Situation Track Alternatives Proposed solution Next Steps


FIVE POSSIBLE RAILWAY TRACES TO LINK SANTIAGO AND VALPARAISO

Current Situation Track Alternatives Proposed solution Next Steps

Green segments are double track.

EXAMPLE OF CIRCULATION DIAGRAM WITH 40 SERVICES: VALPARAISO-SANTIAGO

ALTERNATE DOUBLE SINGLE TRACK (ADST)

Current Situation Track Alternatives Proposed solution Next Steps

NEXT STEPS

- Analyze different traces and alternatives
- Optimize the alternatives regarding:
 - Cost
 - Travel time
 - Number of services

Some lines where ADST could be applied

THANKS

ALTERNATE DOUBLE SINGLE TRACK (ADST)

21 / 21

End