ROCK FRACTURE IN GEOTHERMAL ENERGY SOURCES. APPLICATION OF THE THEORY OF CRITICAL DISTANCES

Author: Jon Justo Urrutia Director: Jorge Castro González

Codirector: Cesar Sagaseta Millán

NATIONAL PLAN PROJECT (Ref.: BIA2015-67479-R)

UNIVERSIDAD <u>DE CANT</u>ABRIA

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

INDEX

► INTRODUCTION

- PERSONAL MOTIVATION
- ▶ MOTIVATION OF THE PROJECT
- RESEARCH TOPIC
- ► INITIAL PLANNING
 - METHODOLOGY
 - SCHEDULE

INTRODUCTION

- COLLABORATIONS
- PROGRESS OF THE PROJECT

RESEARCH

TOPIC

INITIAL

PLANNING

PROGRESS OF

THE PROJECT

INTRODUCTION

PERSONAL MOTIVATION

INTRODUCTION

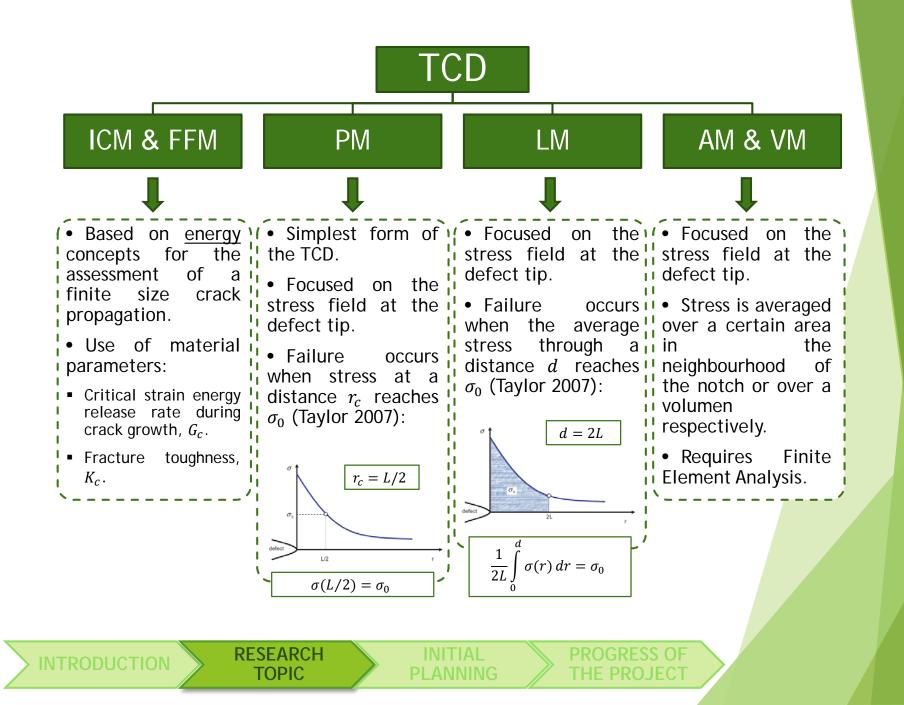
- PRECEDENTS/BACKGOUND:
 - <u>GEOTECHNICS</u>: WORKED ON THE CONSTRUCTION OF A HIDRAULIC TUNNEL IN UNDURRAGA (VIZCAYA).
 - <u>INVESTIGATION</u>: MADE THE THESIS OF THE MASTER (RESEARCH PROJECT) IN THE CLIMATE REASEARCH GROUP OF IHCANTABRIA.
- ▶ VERY INTERESTING AND PROMISING RESEARCH TOPIC.
- GREAT OPPORTUNITY TO WORK WITH JORGE CASTRO, CESAR SAGASETA AND OTHER EXPERTS IN THE FIELD.

INTRODUCTION

- MOTIVATION OF THE PROJECT
 - **GEOTHERMAL ENERGY**:

INTRODUCTION

- CLEAN AND RENEWABLE ENERGY.
- MINIMUM SURFACE SPACE REQUIREMENTS.
- GREAT POTENTIAL FOR EXPANSION.
- THE COST OF WELLS IS ABOUT 40% OF THE TOTAL INVESTMENT COST.
- INCREASE IN GEOTHERMAL POWER PRODUCTIONS OF 1400 TWh/year IS EXPECTED FOR 2050 (IEA), WITH A DIRECT HEAT USE OF 1600 TWh/year.
- CANTABRIA: AIMS TO INCREASE THE INSTALLED POWER FROM THE 0.18 Ktoe OF 2012 TO 3.67 Ktoe IN 2020 (PSEC2014-2020).
- IN CONCLUSION: GEOTHERMAL ENERGY IS IN FULL DEVELOPMENT.

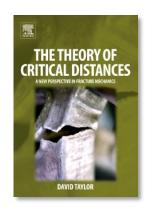

GEOTHERMAL POWER PRODUCTION

RESEARCH TOPIC

- ▶ BRITTLE FAILURE OF ROCKS → THE THEORY OF THE CRITICAL DISTANCES (TCD)
- STRESS RISERS IN ROCKS: DISCONTINUITIES, MICROCRACKS, PORES, GRAIN BOUNDARIES, ETC.
 - → Stress concentration → crack initiation → propagation → brittle failure
- ► OF INTEREST FOR SEVERAL FIELDS:

RESEARCH TOPIC - OBJECTIVES

- STUDYING THE POSSIBILITIES OF USING A NON-CONVENTIONAL METHODOLOGY (BASED ON THE TCD) FOR THE STUDY OF THE RESISTANCE AND BRITTLE FAILURE OF ROCKS AT BOTH ROOM TEMPERATURE AND HIGHER TEMPERATURES.
- ADAPTATION OF THE TCD TO MIX MODE FRACTURE CONDITIONS IN ROCKS (MODE I AND II).
- IMPROVING THE RELIABILITY AND REDUCING THE FINANCIAL COSTS OF THE DRILLING OPERATIONS, OBTAINING MORE EFFICIENT DESIGNS IN GEOTHERMAL ENERGY SOURCES FOR EXAMPLE.
- PROMOTION OF THE USE OF GEOTHERMAL ENERGY AS A SAFE, PRODUCTIVE AND CLEAN ENERGY.
- VALIDATION OF THE METHODOLOGY WITH NON-CONVENTIONAL LABORATORY TESTS, LOOKING FOR A PHYSICAL MEANING OF THE CRITICAL PROPERTIES OF THE ROCK AND ANALYSING THEIR VARIATION WITH TEMPERATURE.


RESEARCH TOPIC

INITIAL PLANNING - METHODOLOGY

THREE INTERACTING LEVELS DURING THE DEVELOPMENT OF THE PROJECT:

1) THEORETICAL LEVEL:

- Bibliographic and theoretical background analysis.
- Mathematical development of the TCD.
- Development of practical applications in the design of geothermal energy sources.

THE THEORY OF CRITICAL DISTANCES A new perspective in fracture mechanics.

David Taylor, 2007.

INITIAL PLANNING - METHODOLOGY

THREE INTERACTING LEVELS DURING THE DEVELOPMENT OF THE PROJECT:

2) **EXPERIMENTAL LEVEL**:

TESTS	TYPES OF ROCKS	REPETITIVENESS	VARIATIONS	TOTAL
Simple Compression Tests (with strain gauges)	4	6	4	96
Brazilian Tests	4	6	4	96
Triaxial Tests	4	3	6	72
4-point Bending Tests	4	6	8	192
3-point Bending Tests	4	6 and 2	8x2 + 5x5x3	480
Petrographic characterization of rocks using microscope	4	1	1	5
Brazilian Tests with notches with variable radii and angles	4 and 1	2	5x5 + 5x5x3	350
Simple Compression Tests with strain guages and notches with variable radii and angles	4 and 1	2	5x5 +5x5x3	350
Triaxial Tests with notches with variable radii and angles	4	1	5x5x3	300
Microscopic analysis of the cracking process	4	2	30	240

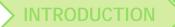
ROCK FRACTURE IN GEC ×

← → C ① rockfracture.unican.es/en/

Home Articles General Information

Materials

Tests Results


Conclusions

English

ROCK FRACTURE IN GEOTHERMAL ENERGY SOURCES. APPLICATION OF THE THEORY OF CRITICAL DISTANCES.

ABOUT US LATEST NEWS

http://rockfracture.unican.es/

INITIAL PLANNING - <u>SCH</u>EDULE

	Year 1				Year 2				Year 3			
ACTIVITIES			III	IV	I	Ш	III	IV	I	Ш	III	IV
1. Bibliographic and theoretical background analysis												
2. Theoretical development												
2.1. Development an approximate model for Mode I												
2.2. Study of the influence of Mode II												
2.3. Improvement of the model to include Mix Mode I-II												
2.4. Validation with the laboratory results (Room temperature)												
2.5. Comparison with numerical simulations												
2.6. Study of the influence of temperature												
2.7. Validation with the laboratory results (High temperature)												
3. Laboratory tests												
3.1. Selection of the materials												
3.2. Machining of the specimens to introduce the notches												
3.3. Simple Compresion, Brazilian and Triaxial tests												
3.4. 4-point bending Tests												
3.5. Notched tests												
3.6. Tests and high temperatures												
3.7. Microscopic analysis of cracking process												
3.8. Interpretation of results												
4. Dissemination and results												
4.1. Elaboration of presentations at national and international events												
4.2. Development of publications in international journals JCR												
4.3. Development and maintenance of the website and social networks												
4.4. Disclosure activities												
4.5. Examples of practical application												
5. Summary and conclusions												

INITIAL

PLANNING

INTRODUCTION

INITIAL PLANNING - COLLABORATIONS

- ► GROUP OF GEOTECHNICS (UC)
- ► GROUP OF MATERIALS LADICIM (UC)
- ► GROUP OF APPLIED GEOLOGY (UC)
- POLYTECHNIC SCHOOL OF MINING AND ENERGY ENGINEERING OF TORRELAVEGA (UC)
- ► TU BERGAKADEMIE FREIBERG (GERMANY) Prof. Heinz Konietzky
 - ► DEVELOPMENT OF THE NUMERICAL SIMULATION
 - COLLABORATION IN THE EXPERIMENTAL PROGRAM
- COLLABORATING COMPANIES: ALDRO Energía y Soluciones, Envirosoil, Cantera Aizkoltxia, GRUPO EPC, TRIAX S.A. & Terrasolum S.L.

PROGRESS OF THE PROJECT

- ► FIRST RESULTS HAVE PROVEN TO BE SATISFACTORY AND PROMISING. → INTERNATIONAL SYMPOSIUM ON NOTCH FRACTURE (SANTANDER, 2017):
 - Notch effect on the fracture of several rocks: application of the Theory of the Critical Distances. Justo, J.; Castro, J.; Cicero, S.; Sánchez-Carro, M.A.; Husillos, R.
- ► AN ENERGETIC CONTINUUM APPROACH HAS SUCCESSFULLY BEEN APPLIED FOR ROCK FRACTURE PREDICTIONS. STRAIN ENERGY DENSITY CRITERION. → EUROPEAN PLAXIS USERS MEETING (SCHROBENHAUSEN - GERMANY, 2017):
 - Finite element analyses for fracture assessment on rocks containing U-shaped notches: An energetic continuum approach. Justo, J.; Castro, J.; Sagaseta, C.

PROGRESS OF THE PROJECT

THANK YOU FOR YOUR ATTENTION