STUDY OF BITUMINOUS PAVEMENTS USING BY-PRODUCTS FROM CARBON BLACK MANUFACTURE

Author: Leticia López López
Thesis supervisor: Ángel Vega Zamanillo
Thesis co-director: Miguel Angel Calzada Pérez

TABLE OF CONTENTS

ACTIVITY 1 Preliminary studies

- 1.1 State of the art of carbon black.
- 1.2 State of the art use of carbon black in the road sector

ACTIVITY 2 Characteristic parameters for carbon black

- 2.1 Physico-chemical characterisation
- 2.2 Mechanical and rheological behaviour of binders with carbon black by-products

ACTIVITY 3 Lines of research

- 3.1 Line 1: Use in asphalt mixes in wearing courses
- 3.2 Line 2: Bituminous emulsions

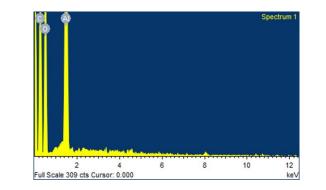
ACTIVITY 1: PRELIMINARY STUDIES

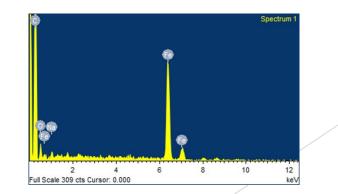
The following conclusions can be drawn from the articles analysed:

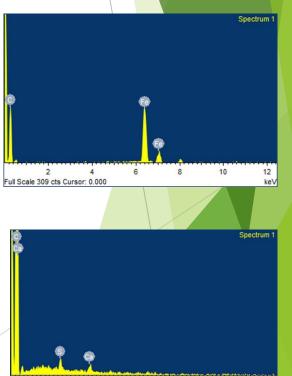
- Mainly tyre pyrolysis carbon black (NCp) is used.
- NCp is mainly incorporated as a bitumen additive (wet process).
- The incorporated % of NCp ranges from 5% to 25% by weight of the bitumen.
- Results obtained by incorporating Ncp.
 - Reduces susceptibility to T^a
 - Increases the Marshall stability of asphalt mixes (ability to resist deformation).
 - Reduces **rutting** in bitumen
 - Reduces low temperature cracking
 - Increases the tensile strength of asphalt mixes at low temperatures.
 - On roads with heavy vehicle traffic, it improves resistance.
 - In hot climates it improves the stiffness and elasticity of bitumens.
 - Improved breaking strength of aged bitumens.
 - Increases the modulus of elasticity and decreases the viscosity of the asphalt.

ANALYSED BY-PRODUCT

- Material used WWTP sludge
- High moisture content
- Pre-treatment is necessary:
 - Dry in an oven at 110° for 24h.
 - Grind and sieve through a 0.5 mm sieve







CHEMICAL COMPOSITION

- **SEM** scanning microscope test
- The analysed sample has "impurities".
- Impurities detected in the sample:
 - Aluminium oxide
 - Iron residues
 - Potassium oxide
 - Sulphur oxide
 - Copper oxide
 - Calcium

2 4 6 8 10 12 Full Scale 309 cts Cursor: 0.000 keV

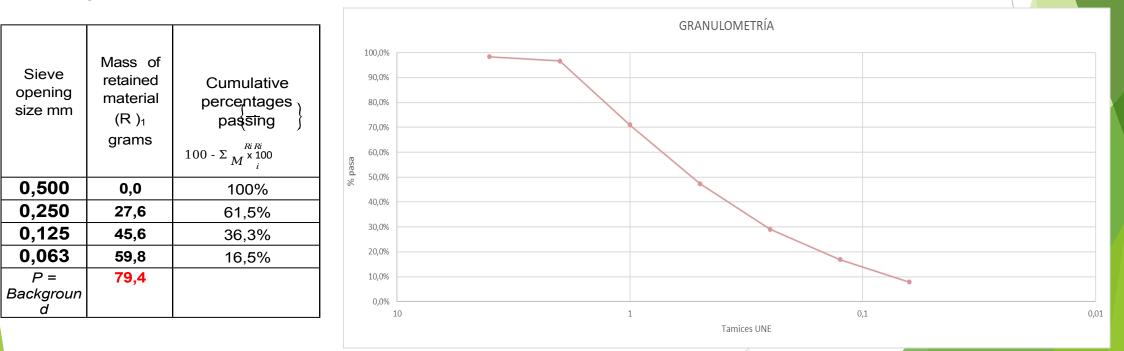
DENSITY

- Test carried out in accordance with UNE EN 1097-6 Determination of particle density and water absorption.
- DENSITY OBTAINED : 1,882 gr/cm3

HUMIDITY

Test performed according to UNE - EN - 17892-1:2014 Determination of humidity.

HUMIDITY OBTAINED : MORE THAN 100%.



GRANULOMETRY

- Test carried out in accordance with UNE - EN - 933-1 Determination of granulometry. Sieving method.

RESULTS OBTAINED

- From the analysis of the chemical composition it is concluded that the elements present in the by-product such as iron, aluminium, sodium, potassium... are impurities and have little influence on the sample.
- Since the density of the by-product (1,882 g/cm³) is higher than that of bitumen (1,031 g/cm³), the carbon black by-product will decant when mixed with bitumen.
- Due to the high moisture content of the by-product, it is necessary to dry, grind and sieve it in order to work with it.
- Based on the results obtained from the granulometry, the by-product is not considered as a substitute material for filler only. Taking into account the size of the by-product, it will be used as a substitute for fine aggregate, all of which passes through 0.5mm.

ACTIVITY 2.2: MECHANICAL BEHAVIOUR AND RELUBRICATION OF BINDERS

Working methodology analysis of unaged/aged binders :

1° Reference bitumen: REPSOL 50/70

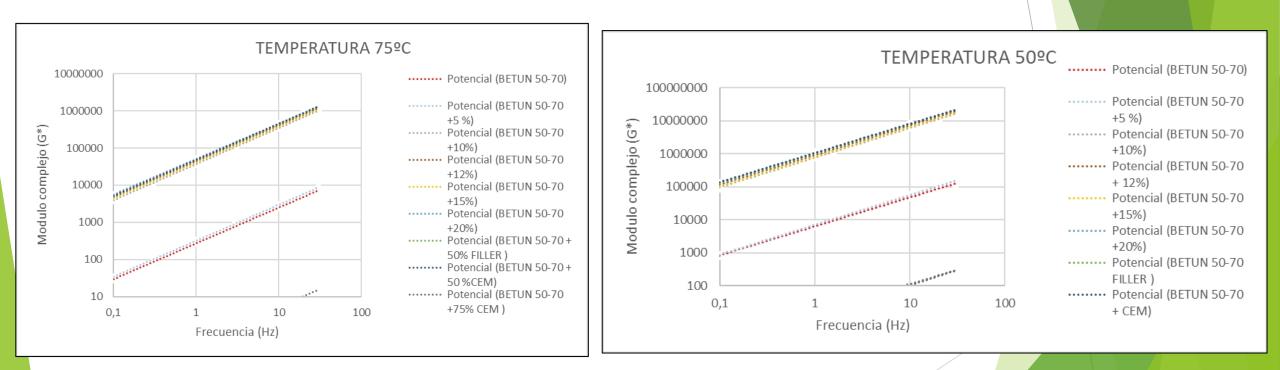
```
2nd Bitumen reference + % NC (5%, 10%,12%, 15%, 20%)
NC sieving with 0,5 mm sieve
```

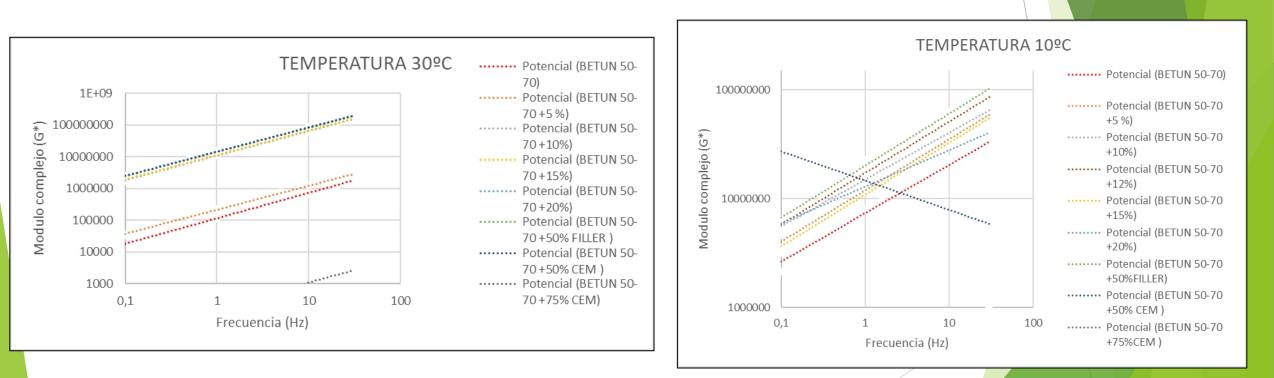
3º Reference bitumen + filler

5° Reference bitumen + cement

4th Comparison of results


- Rheometer.
- Binder penetration.
- Softening temperature of binders.


RESULTS OBTAINED WITHOUT AGEING



RESULTS OBTAINED WITHOUT AGEING

RESULTS OBTAINED WITHOUT AGEING

RESULTS OBTAINED VISCOSITY WITHOUT AGEING

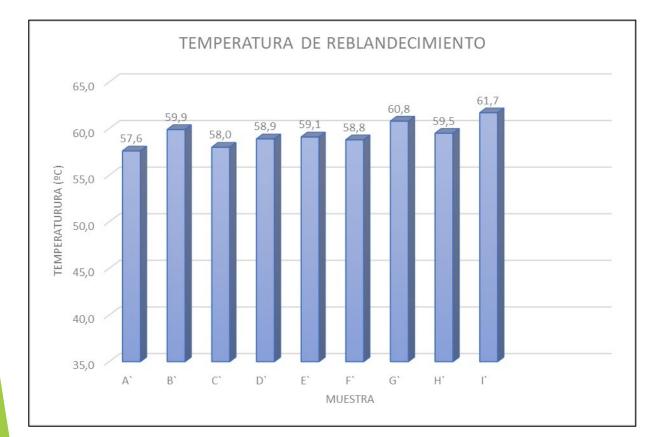
		VISCOSIDA	٩D	
1E+07				Exponencial (BETUN 50-70)
1E+06		_		······ Exponencial (BETUN 50-70 +5%)
(⁹) 45 45				<pre> Exponencial (BETUN 50-70 +10%)</pre>
(bais) (Pais) (Pais)				Exponencial (BETUN 50-70 +15%)
pe 1E+04			**************************************	<pre> Exponencial (BETUN 50-70 +12%NC)</pre>
1E+04 is coso is 1E+03		A State Street S		······ Exponencial (BETUN 50-70 +50% FILLER)
>		and the second sec		······ Exponencial (BETUN 50-70 +50% FILLER)
1E+02			····	······ Exponencial (BETUN 50-70 +50%CEM)
1E+01				 Exponencial (BETUN 50-70 + 75% CEM)
C	20	40 60	80	
		Temperatu	ra ºC	

	ECUATION	R^2
BETUN 50-70	η= 3E+06e ^{-0,155T}	0,9722
BITUMEN 50-70+ 5% BITUMEN	η = 4E+06e ^{-0,159T}	0,9697
BITUMEN 50-70 +10	η = 3E+06e ^{-0,076T}	0,6182
BITUMEN 50-70 +12% +12	η = 6E+06e ^{-0,085}	0,6596
BITUMEN 50-70 +15 % +15	η= 4E+06e ^{-0,078T}	0,5975
BITUMEN 50-70+20	η = 3E+06e ^{-0,07T}	0,5691
BITUMEN 50-70+ FILLER	η = 3E+06e ^{-0,076T}	0,6182
BITUMEN 50-70 + CEM 50%.	η= 4E+06e ^{-0,073T}	0,55 <mark>18</mark>
BITUMEN 50-70 + CEM 75%.	η= 1E+07e ^{-0,166T}	0,9687

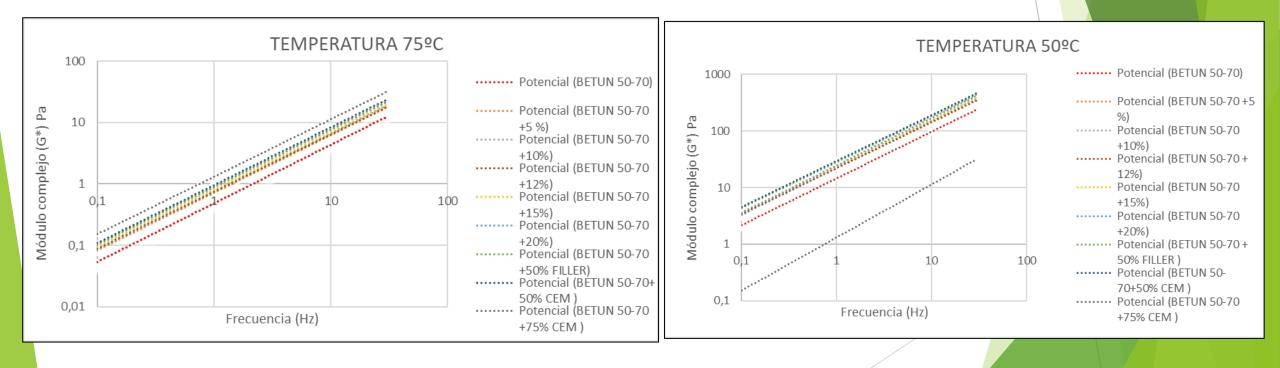
AGEING OF BITUMENS

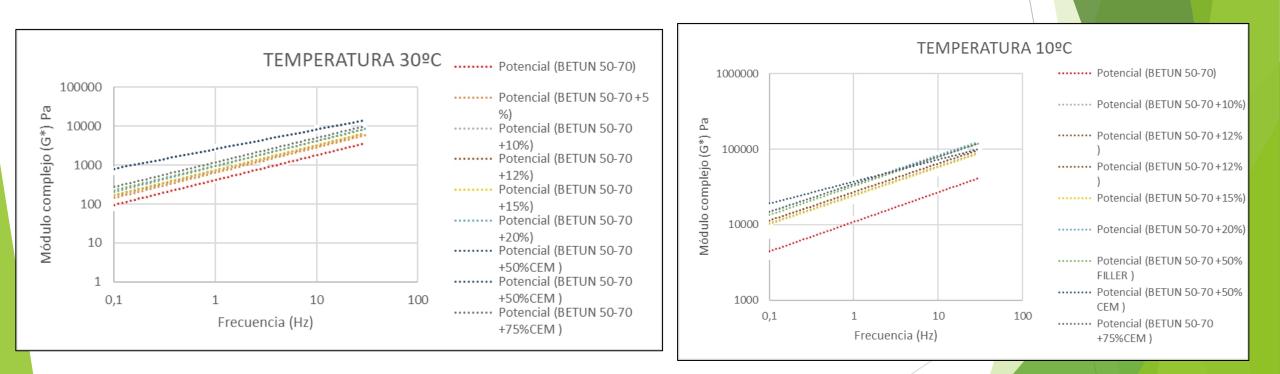
Simulate the deterioration of bitumens over time under temperature and pressure conditions.

- **SHORT-TERM AGEING.** Rotating thin film and rotating thin film test (RTOF). It represents the ageing that a bituminous binder undergoes during handling, storage, mixing and paving of asphalt mixtures.

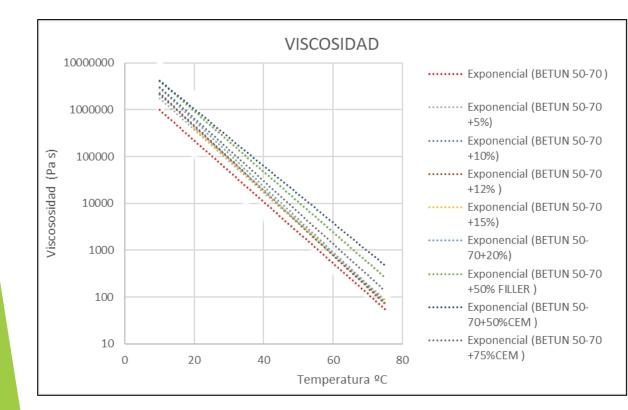

-

LONG-TERM AGEING. Pressure ageing test (PAV) PAV ageing attempts to simulate the degree of hardening that bitumen undergoes after several years in service.

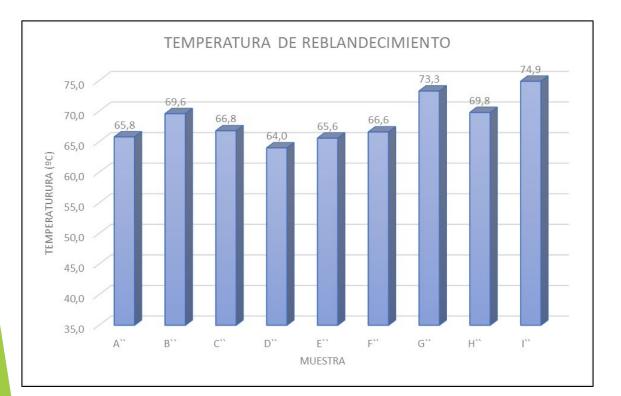

SHORT-TERM AGEING RESULTS



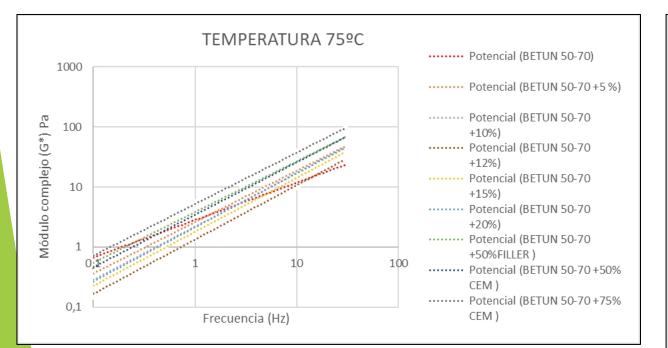
SHORT-TERM AGEING RESULTS

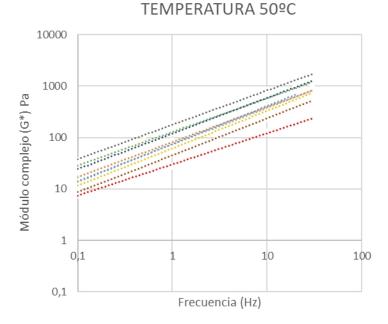


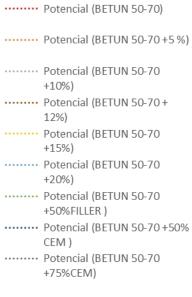
SHORT-TERM AGEING RESULTS


RESULTS VISCOSITY SHORT TERM AGEING

ECUATION	R^2
η= 4E+06e ^{-0,151T}	0,9607
η= 8E+06e ^{-0,154T}	0,9603
η = 1E+07e ^{-0,158T}	0,9621
$\eta = {}^{4E+06e-0,1536T}$	0,9607
η= 9E+06e ^{-0,161T}	0,9629
η = 1E+07 <mark>e^{-0,07T}</mark>	0,9621
η = 2E+07e ^{-0,149T}	0,9384
η= 2E+ <mark>0e-0^{,140T}</mark>	0,9264
η= 1E+07e ^{-0,154T}	0,9586
	$\begin{split} \eta &= 4E + 06e^{-0.151T} \\ \eta &= 8E + 06e^{-0.154T} \\ \eta &= 1E + 07e^{-0.158T} \\ \eta &= 4E + 06e^{-0.1536T} \\ \eta &= 9E + 06e^{-0.161T} \\ \eta &= 1E + 07e^{-0.07T} \\ \eta &= 2E + 07e^{-0.149T} \\ \eta &= 2E + 0e^{-0.140T} \end{split}$


LONG-TERM AGEING RESULTS





LONG-TERM AGEING RESULTS

····· Potencial (BETUN 50-70)

------ Potencial (BETUN 50-70+5%)

······ Potencial (BETUN 50-70+10%)

------ Potencial (BETUN 50-70+ 12%)

------ Potencial (BETUN 50-70 +15%)

------ Potencial (BETUN 50-70 +20%)

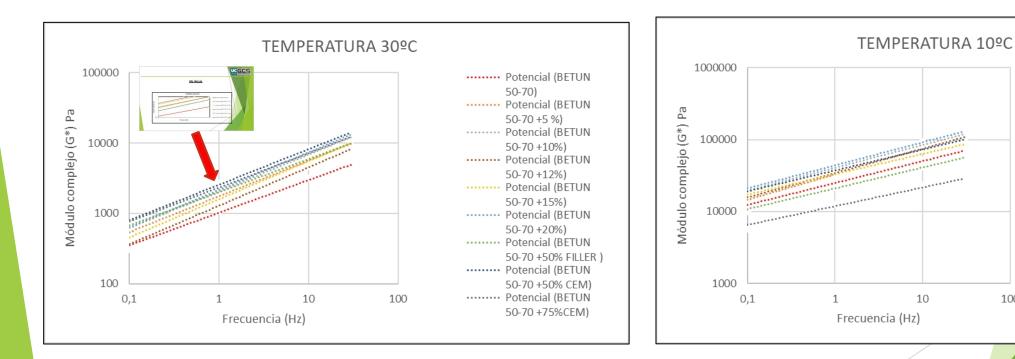
······ Potencial (BETUN 50-70+50%

······ Potencial (BETUN 50-70+75%

······ Potencial (BETUN 50-70

FILLER)

CEM)

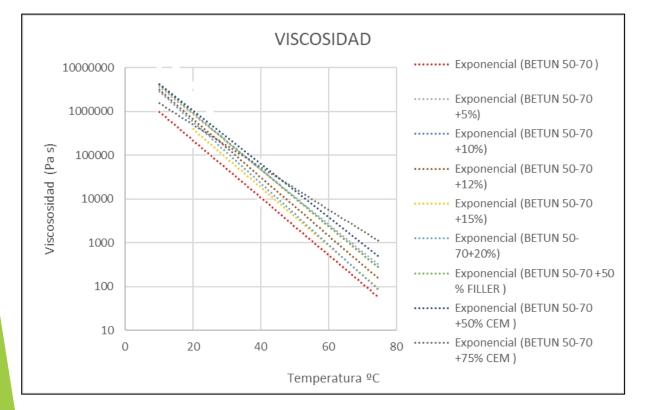

10

100

+50%CEM)

ACTIVITY 2.2: MECHANICAL AND RHEOLOGICAL BEHAVIOUR OF BINDERS

LONG-TERM AGEING RESULTS



DETAIL TEMPERATURE 30°C ••••• Potential (BETUN 50-70) ••••• Potential (BETUN 50-70 +5 %) Complex module (G*) ••••• Potential (BETUN 50-70 +10%) ••••• Potential (BETUN 50-70 +12%) ••••• Potential (BETUN 50-70 +15%) ••••• Potential (BETUN 50-70 +20%) 2000 5 Frequency (Hz)

RESULTS VISCOSITY LONG-TERM AGEING

	ECUATION	R^2
BETUN 50-70	η= 4E+06e ^{-0,151T}	0,9607
BITUMEN 50-70+ 5% BITUMEN	η= 2E+06e ^{-0,145T}	0,9299
BITUMEN 50-70 +10	η= 2E+06e ^{-0,149T}	0,9384
BITUMEN 50-70 +12	η= 1E+07e ^{-0,153T}	0,9443
BITUMEN 50-70 +15 % +15	η= 9E+06e ^{-0,153T}	0,9629
BITUMEN 50-70+20	η= 41+0 <mark>6e^{-0,161†}</mark>	0,9621
BITUMEN 50-70+ FILLER	η= 2E+06e ^{-0,149T}	0,9384
BITUMEN 50-70 + CEM 50%.	η= 2E <mark>+06e^{-0,14T}</mark>	0,92 <mark>64</mark>
BITUMEN 50-70 + CEM 75%.	η= 5E+06e ^{-0,112T}	0,8485

CONCLUSIONS

- From the SHORT-TERM AGING it can be concluded that as we increase the % of NC by-product, the penetration and softening temperature values remain constant.
- At low temperatures the complex modulus G* increases and the strength of the binder improves.
- From the analysis of LONG-TERM AGEING it can be concluded that as the % of by-product increases, the values of penetration and softening temperature remain constant.
 From the analysis of the SHORT-TERM AGING rheometer it can be seen that by mixing the reference bitumen
- with different percentages of NC the complex modulus increases as the % of NC increases.
 At low temperatures the complex modulus G* increases and the strength of the binder improves.
 - The percentage of NC to be used to make asphalt mixes for the following activities is between **10-12% by** weight of the bitumen.

THANK YOU FOR YOUR ATTENTION